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A model for fibre contact in planar random
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A model is presented for the expected degree of contact between fibres in isotropic
near-planar random fibre networks. The statistics of fibre contact in two-dimensional fibre
networks are considered and the expressions derived are developed to allow the fractional
contact area in structures formed by the superposition of two-dimensional structures to be
derived. These expressions allow the fractional contact area to be expressed in terms of the
network porosity only. For thin networks, the fractional contact area may be expressed in
terms of network porosity and the expected coverage of the network. Theory permitting the
determination of the expected area of one contact and hence the expected number of
contacts per fibre is presented also. Good agreement is found between the expressions
derived for the fractional contact area and data from the literature. C© 2004 Kluwer
Academic Publishers

1. Introduction
The statistical geometry of random fibrous and line net-
works has been studied by many workers. Miles [1]
considered the statistics of polygons formed by the in-
tersections of a system of straight lines positioned ac-
cording to a point Poisson process in two dimensions
and with uniformly distributed orientation to a given di-
rection. Miles showed that the expected number of sides
per polygon in such a network is 4 and that distribution
of the radii of circles inscribed within the polygons is
negative exponential. These results were confirmed in
the Monte-Carlo study of Piekaar and Clarenburg [2]
and were developed by Corte and Lloyd [3] and Dodson
and Sampson [4] who derived the pore radius distribu-
tion for random and clumped stochastic line networks
respectively.

Industrially manufactured stochastic fibrous net-
works include nonwoven fabrics, fibrous filter media
and paper. Naturally, the fibres used in the manufacture
of such materials have finite length and width and as
such these have been incorporated in statistical models.
Kallmes and Corte [5] considered the statistical geom-
etry of ‘two-dimensional’ random fibre networks, and
defined a random fibre network as one where fibre cen-
tres are positioned according to a point Poisson process
in two dimensions and the orientation of fibre axes to a
given direction has a uniform distribution. The number
of fibres covering a point is termed the coverage and
Kallmes and Corte defined two-dimensional networks
as those where less than 1% of the area has coverage
greater than two. They derived expressions for several
structural features including the expected number of
crossings per fibre, the expected distance between such
crossings and the expected pore area. The distribution of
mass in random fibre networks was derived by Dodson

[6] and was shown to be a function of the scale of in-
spection, the mean mass per unit area of the network
and the length, width and mass per unit length of the
constituent fibres.

An additional feature of interest in the structure of
stochastic fibrous networks is the amount of contact that
occurs between fibres. This property is important since
it determines the available area for inter-fibre bonding
and hence contributes strongly to many of the mechan-
ical properties of the network. In an industrial context,
the mechanical deformation of fibrous webs such as pa-
per, nonwoven fabrics and fibrous filters under strain,
and ultimately their failure, are important in their man-
ufacture and in converting and end-use applications. In
the cases of paper and paperboard inparticular, these are
typically manufactured to a tensile strength dependent
on end-use application and specified by the customer;
the preparation of fibres for manufacture of the web pri-
marily involves developing their potential for bonding
to meet these specifications.

Deng and Dodson [7], following Kallmes et al. [8],
considered a two-dimensional network of expected
coverage c̄ ≤ 1, such that less than 2% of the area
is covered by more than three fibres. They showed that
the fraction of fibre surface in contact with other fibres,
termed the Relative Bonded Area (RBA) was given by

RBA = 1 − 1 − e−c̄

c̄
, (1)

where c̄ is the expected coverage of the network.
The maximum out-of-plane dimension of web or

sheet-like stochastic fibrous networks is typically only
a fraction of the expected length of the fibres from
which they are made. Radvan, Dodson and Skold
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[9], in an elegant series of experiments showed that
the structure of paper is essentially layered with fibre
axes oriented within only a few degrees of the network
plane. Whilst no discrete layers exist within conven-
tionally manufactured stochastic fibre networks, the ex-
periments of Radvan, Dodson and Skold indicate that
fibres lie one on top of another and are not intertwined
to any significant extent. Accordingly, several workers
have modelled these structures as multi-layer compos-
ite structures of two-dimensional networks. Soszyński
[10] used the binomial distribution to model the ex-
pected amount of contact between fibres in a structure
of n layers with solid fraction (1 − ε) such that

RBA = n

n − 1
(1 − ε)2, (2)

and defined number of layers in a given structure in
terms of the thicknesses of the fibres and the network.

Measurements of the relative bonded area made on
micrographs of cross-sections of laboratory formed net-
works have been recently presented by Niskanen and
Rajatora [11]. They found good agreement between
their data and the expression,

RBA = a

h̄

(
1 − 1 − e−c̄

c̄

)
(3)

where a is the resolution of their measuring system and
h̄ is the measured mean vertical separation of fibres. We
note the similarity between Equations 1 and 3 and that
Niskanen and Rajatora found good agreement between
Equation 3 and computer simulations of high coverage
networks [12].

Gates and Westcott [13] derived expressions for the
upper and lower bounds of fibre contact areas incorpo-
rating the thickness of fibres, t as a variable controlling
fibre flexing. They presented also the approximation,

RBA ≈



c̄e−c̄t/2 for c̄ ≤ 2/t
2

et
for c̄ ≥ 2/t

(4)

and found good agreement with data from simulations.
Note that the simulations of Hellén et al. [12] incorpo-
rate the flexing of fibres as an input parameter also.

Here we apply the concept of multiplanar fibrous net-
works to the study of the fractional contact area in ran-
dom fibre networks. The expressions derived allow the
fractional contact area to be expressed in terms of the
network density only for thick networks, and in terms
of the network density and mean coverage for thin net-
works. The expressions derived are compared with data
from the literature. From the functions giving the frac-
tional contact area, we proceed to determine the ex-
pected area of a single contact and hence the expected
number of contacts per fibre.

2. Theory
We consider first the statistical geometry of two-
dimensional random fibre networks and derive expres-

sions for the fraction of the surface of a chosen fibre
that is in contact with other fibres. We proceed to con-
sider the superposition of two-dimensional networks to
form multiplanar structures more representative of typ-
ical commercially formed networks. We define a ran-
dom network of fibres as one where the fibre centres
are positioned according to a point Poisson process in
two dimensions and the orientation of fibre axes to a
given direction has a uniform distribution. The number
of fibres covering a point is termed the coverage and
the Poisson probability that a given point has coverage,
c is given by

P(c) = c̄ce−c̄

c!
, (5)

where c̄ is the mean coverage of points in the network.

2.1. Two dimensions
Following Sampson [14], we define the mean coverage
of a two-dimensional network in terms of its fractional
open area, ε such that

ε = e−c̄,

and therefore,

c̄ = log(1/ε). (6)

Sampson showed that for such a two-dimensional ran-
dom fibre network, the expected pore radius was real
and positive for e− π

2 ≤ ε < 1, this corresponding to a
networks of mean network coverage, c̄ ≤ π/2. Above
this mean coverage, the theory of Sampson [14] yields
a negative value for the mean pore radius of a two-
dimensional network. Naturally, the mean pore radius
of a fibre network can be zero only when the porosity of
the network is zero also; the upper limit on mean cov-
erage arises because the model is unable to distinguish
between voids that are closed by the edges of fibres
being adjacent to each other, and those that are closed
when the edges of fibres overlap. In the sequel, we bear
this in mind in our discussion of the applicable range
of the theory developed here. Accordingly, we define
our two-dimensional network as one of mean coverage
less than π/2 or equivalently, of mean porosity greater
than e− π

2 ≈ 0.208 and examine the behaviour of the
expressions derived for all porosities above this math-
ematically permissible limit.

Substitution of Equation 6 in Equation 5 gives,

P(c) = ε

c!
log(1/ε)c. (7)

Consider now any given fibre within such a two-
dimensional network; Fig. 1 shows the contact states
of fibres in regions of coverage between 1 and 5. In
regions of coverage 1, the fibre is in contact with no
others; where the coverage is 2, any fibre is in contact
with the other fibres either above or below it, so the ex-
pected number of contacts φ̄ is 1. Where the coverage
at points is 3, there are three ways to chose a fibre: two
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Figure 1 Contact states of fibres in regions of coverage between 1 and 5.
Each rectangle represents a fibre and the number within it represents the
number of contacts that it makes. The value of φ̄ beneath each coverage
group represents the expected number of contacts in regions with that
coverage.

where the chosen fibre is in contact with others on one
side only and one where it is in contact on both sides, so
we have φ̄ = (1 + 2 + 1)/3 = 4/3. In the general case,
in regions of coverage c there are 2 ways of choosing
a fibre that is in contact with one other, and (c − 2)
ways that it is contact on both sides. Thus, the expected
number of contacts at points with coverage c is,

φ̄(c) = 2(c − 1)

c
. (8)

The expected fraction of any given fibre in a two-
dimensional network that is in contact with other fibres
is given by

�2D = 1

c̄

∞∑
c=1

φ̄(c)P(c), (9)

We have defined our two-dimensional network as one
with mean coverage up to π/2. For such a network, the
probability that the coverage is greater than 5 is less
than 1%. Considering regions of coverage no greater
than 5 gives therefore

�2D ≈ ε log(ε)

(
−1

2
+ 2

9
log(ε) − 1

16
log(ε)2

+ 1

75
log(ε)3 + · · ·

)
. (10)

2.2. Multiplanar structures
Consider now a structure formed by the superposition of
two-dimensional networks with independent and iden-
tical distributions of contacts as described above. As-
suming that each two-dimensional network has some
small but finite thickness perpendicular to its plane, we
consider the space not occupied by fibres to have vol-
ume where in the two-dimensional case it had only area;
as such, we consider the fractional open area and the
fraction void volume or porosity to be equivalent.

Each layer of such a multiplanar network is assumed
to make new contacts with the layers immediately above
and below it only; accordingly we consider first a three
layered structure. A given fibre in the central layer may
form additional contacts with the surrounding layers in
those regions where its own layer has no contact on
either side, or is in contact with other fibres above or

below it only. The fraction of new contacts occurring
between layers is (1 − ε)2; of this fraction, additional
contact is made with all regions in the central layer with
coverage 1; 1/2 the regions with coverage 2; 1/3 of re-
gions with coverage 3, and in general 1/c of all regions
of coverage c. The additional fraction of a given fibre
in the central layer that contacts fibres from adjacent
layers is therefore given by

�∗ = 2(1 − ε)2
∞∑

c=1

1

c
P(c) (11)

where the coefficient 2 is included to account for con-
tacts generated on both sides of the central layer. Again
truncating the sum to consider regions of coverage up
to 5 only, this yields,

�∗ ≈ 2ε(1 − ε)2 log(ε)

(
−1 + log(ε)

4
− log(ε)2

18

+ log(ε)3

96
− log(ε)4

600
+ · · ·

)
. (12)

Thus, the expected fraction of a fibre in the body of the
network that is in contact with other fibres is given by

�mp = �2D + �∗. (13)

Equation 13 is plotted against porosity in Fig. 2. The
expressions of Deng and Dodson [7] and Soszyński
[10], as given by Equations 1 and 2 with n = ∞, re-
spectively are plotted in Fig. 2 also. We observe that
Equation 13 predicts a higher fractional contact area
at a given density than the theory of Soszyński and
that when ε = e−π/2, �mp = 0.992 such that fibres in
the network are approaching full contact. Soszyński’s
equation, on the other hand, gives �mp → 1 as ε → 0;
this is discussed further in the sequel. The equation of
Deng and Dodson is strictly applicable to thin networks
only and gives a similar estimate of the fractional con-
tact area as Equation 13 for porosities above about 0.8.

2.2.1. Surface effects
Towards the top and bottom surfaces of a multiplanar
network, the probability of contact with other fibres

Figure 2 Influence of porosity on fractional contact area of a fibre in the
bulk of multiplanar network.
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decreases. The number of two-dimensional layers that
are required to form a multiplanar network of given
mean coverage c̄mp may be determined as

n = c̄mp

c̄
= c̄mp

log(1/ε)
(14)

Thus, the porosity of the network defines the coverage
of a layer and hence the number of layers required to
model a given multiplanar structure; the mean coverage
of the network is independent of its porosity however.

Commercially formed fibre networks are typically
manufactured to a specified mass per unit area or areal
density. For a network of mean areal density β̄ formed
from fibres of width, ω and mass per unit length δ the
mean coverage is β̄ω/δ and hence the number of layers,
n is given by,

n = βω

δ log(1/ε)
(15)

For such a structure the expected fraction of any fibre
that is in contact with other fibres is,

�∗
mp = 1

n
((n − 2)�mp + �∗) (16)

Equation 16 is plotted in Fig. 3 for the range of poros-
ity permitted by the model; the broken lines represent
the fractional contact area neglecting the contribution of
surfaces as given by Equation 13 and the dotted line rep-
resents the coverage at which Equation 16 given 95%
of the fractional contact area predicted by Equation 13.
This dotted line therefore provides an indication of the
contribution of the fibres at the surface of the network
to the global average fractional contact area. We ob-
serve that this contribution is greater for dense net-
works, i.e., those with low porosity, than for networks
with more open structures.

The 95% threshold guides the classification of ‘thin’
or ‘thick’ networks in terms of their porosity and mean
coverage. For example, a network of porosity 0.5 may
be considered thick enough to estimate the fractional

Figure 3 Influence of coverage on fractional contact area for structures
of different porosity. The broken horizontal lines represent the fractional
contact area neglecting the contribution of surfaces as given by Equa-
tion 13 and the dotted line represents the coverage at which Equation 16
gives 95% of the fractional contact area predicted by Equation 13.

contact area neglecting the contribution of surfaces us-
ing Equation 13 if it has mean coverage greater than
about 20, whereas a network of porosity 0.8 may be
considered thick enough to apply Equation 13 if it has
mean coverage greater than about 8.

2.3. Number of contacts per fibre
Consider now a thin random network of fibres of length
λ and width ω. When the mean coverage of the network
c̄ is less than 0.436, the fraction of the area with cover-
age greater than 2 is less than 1%. The expected number
of fibre crossings per fibre in such a network is given
by Kallmes and Corte [5] as,

n̄2D = 2c̄λ

πω
for c̄ ≤ 0.436. (17)

For such a thin network, the fractional contact area is
given by �2D and the expected area of a given fibre that
is in contact with others is given by

Āc = 2λω�2D, (18)

such that the expected area of a single contact is

Ā1 = Āc

n̄2D
, (19)

= πω2

c̄
�2D (20)

It follows directly from Equation 17 that when the ex-
pected number of crossings per fibre is 1, the expected
coverage is c̄ = πω/(2λ) such that ε = e

−πω

2λ . Denoting
the fractional contact area of a two dimensional network
with this coverage, �crit

2D we have therefore,

Ā1 = 2λω�crit
2D . (21)

For infinitely long fibres every crossing will be a par-
allelogram of area ω2/ sin(θ ) where θ is the angle at
which a pair of fibres cross. It is readily shown that the
expected value of sin(θ ) in a network of fibres with a
uniform distribution of orientations is 2/π , so the ex-
pected area of a crossing in a network of infinitely long
fibres is πω2/2. Substitution of �2D from Equation 10
when ε = e− πω

2λ into Equation 21 and taking the limit
as the fibre length tends to infinity yields,

lim
λ→∞

( Ā1) = π

2
ω2,

recovering the established result for infinitely long fi-
bres. As this treatment is dependent on the theory pre-
sented for the fractional contact area of a two dimen-
sional network, it validates Equation 10 and allows
the expected area of a single contact for fibres of fi-
nite length to be determined using Equation 21; this
value always being a multiple of ω2 less than π/2 since
crossings overlapping fibre ends will have area less than
ω2/ sin(θ ).
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Figure 4 Effect of fibre aspect ratio on the expected number of contacts
per fibre for networks of mean coverage c̄mp = 10.

Now, Equation 21 gives us the expected area of one
contact and Equation 16 gives the fractional contact
area of fibres in a multiplanar network considering the
contribution of fibres close to the network surface. It
follows then that the expected number of contacts per
fibre, n̄∗

mp is given by,

n̄∗
mp = 2λω

Ā1
�∗

mp (22)

= �∗
mp

�crit
2D

(23)

The aspect ratio of a fibre is given by the ratio of its
length to its width. The expected number of contacts
per fibre, as given by Equation 23, is plotted against
fibre aspect ratio in Fig. 4 for networks of mean cover-
age, c̄mp = 10; the number of layers for each value of
porosity considered being determined by Equation 14.
In line with expectation, we observe an almost linear
increase in the expected number of contacts per fibre
with increasing aspect ratio; the gradient of the rela-
tionship decreasing with increasing porosity. Taking the
limit of n̄∗

mp as λ and c̄mp tend to infinity, we find that
the maximum expected number of contacts per fibre
is 4/π ≈ 1.27 times the aspect ratio. This seems rea-
sonable since the maximum possible number of cross-
ings is twice the aspect ratio and occurs when fibres lie
perpendicular to each other with each crossing having
area ω2.

The expected number of contacts per fibre is plotted
against mean network coverage in Fig. 5 for fibres of
aspect ratio 100. The broken horizontal lines represent
the expected number of contacts per fibre neglecting the
contribution of surfaces and calculated by substituting
�mp for �∗

mp in Equation 23; the dotted line represents
the coverage at which Equation 23 gives 95% of the
expected number of contacts predicted neglecting the
contribution of surfaces. As the expected number of
contacts per fibre is proportional to the fractional con-
tact area, we observe the same influence of fibres close
to the surface as shown in Fig. 3, i.e., the contribution
of fibres close to the surface of the network is greater
for networks with low porosity than for networks with
more open structures.

Figure 5 Effect of mean network coverage on the expected number of
contacts per fibre for fibres of aspect ratio 100. The broken horizon-
tal lines represent the expected number of contacts per fibre neglecting
the contribution of surfaces and the dotted line represents the coverage
at which Equation 23 gives 95% of the expected number of contacts
predicted neglecting the contribution of surfaces.

3. Application and validation
The amount of contact between fibres determines the
available area for inter-fibre bonding in industrially
manufactured fibrous networks such as nonwoven fab-
rics, fibrous filter media and paper. In such materi-
als, the degree of bonding determines their mechanical
properties and hence their suitability for given applica-
tions. The fractional contact area in such networks is
rather difficult to measure experimentally, though the
relationship between the strength and optical properties
of paper formed from natural fibres has been shown
by Ingmanson and Thode [15] to provide an estimate
of the relative bonded area. The technique uses mea-
surements of the specific light scattering coefficient, s
(m2 g−1) and tensile strength of samples made from a
given fibre type such that,

RBA = 1 − s

s0
, (24)

where s0 is the specific light scattering coefficient of
an unbonded sheet and is determined by extrapolation
of a plot of light scattering coefficient against tensile
strength. Inherent in the method are the assumptions
that in regions where fibres are in mutual optical con-
tact, they are bonded also and that the extrapolation
to determine s0 is reliable. This second assumption is
important. In a study of papers formed from various
wood pulp fibres, Rennel [16] with Hartler [17] inves-
tigated the relationships among density, light scattering
coefficient, tensile strength and the surface area of fi-
bres as determined by nitrogen adsorption for freeze-
dried, solvent exchange dried and spray dried fibres. Of
particular relevance to the work presented here is the
conclusion drawn by Rennel and Hartler that there is
no reason to suppose that a unique relationship exists
between fibre surface area and the light scattering coef-
ficient. Typically, we expect the Relative Bonded Area
obtained using the approach of Ingmanson and Thode
[15] to provide an overestimate; nevertheless, data ob-
tained using this technique are widely available in the
literature and represent the best available experimental
evidence against which the model may be tested. Note
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also that the fractional contact area, for which we have
derived expressions here, represents an upper bound
on the relative bonded area and is equivalent to the rel-
ative bonded area only when all areas of contact are
bonded.

The general literature provides some data for both the
porosity or density, and the fractional contact area. Yang
et al. [18] measured the regions of contact of micro-
graphs cross-sections of three paper samples manufac-
tured on papermaking machines. Jowsey [19] presents
data for the relative bonded area and density of labora-
tory formed fibre networks pressed to differing degrees
and treated with starch to improve inter-fibre bond-
ing; Moss [20] gives similar data for laboratory formed
networks made from three fibre types each subjected
to mechanical work; Wilde [21] gives data for net-
works formed on a pilot scale papermaking machine
from blends of two fibre types subjected to different
mechanical treatments. Neither Moss nor Wilde report
the relative bonded area, but both report measurements
of tensile strength, optical properties and density. For
comparison with the model presented here, their data
have been processed to yield the relative bonded area
using Equation 24. Note also that whilst the struc-
ture of the laboratory formed networks of Jowsey and
Moss may be considered close to random, the struc-
ture of the machine made networks of Wilde can be
expected to exhibit significant departures from ran-
domness due to interaction between fibres and hydro-
dynamic effects; for discussion of these see Sampson
[22].

The relative bonded area is plotted against poros-
ity for the data of Jowsey, Moss, Wilde and Yang
et al. in Fig. 6. Since the coverage of the networks
was not reported, the number of layers constituting
the networks cannot be calculated.; accordingly the
data are compared with the fractional contact area cal-
culated without accounting for surface effects using
Equation 13. Porosities have been estimated from the
reported densities of networks using,

ε = 1 − ρnetwork

ρfibre
(25)

Figure 6 Comparison of experimental data for Relative Bonded Area
with Equation 13 for the fractional contact area of a fibre in the bulk of
multiplanar network.

where ρnetwork and ρfibre are the densities of the networks
and the fibres respectively; the density of fibres has been
assumed to be that of cellulose, the main constituent of
wood pulp fibres, i.e., ρfibre = 1.5 g cm−3. From the
discussion of Fig. 3 we expect the fractional contact
area as predicted by Equation 13 to be greater than
that given by Equation 16 because fibres close to the
surfaces of the network are in contact with fewer other
fibres than those in the bulk of the network. Despite this,
the agreement between theory and experiment shown
in Fig. 6 is good, particularly considering the different
sources of data, fibre types, fibre treatments, the non-
random nature of the machine-made samples and the
assumption of constant fibre density for all samples.

Data for the fractional contact area measured from
micrographs of laboratory formed networks are given
by Paavilainen [23] and Niskanen and Rajatora [11].
As well as measuring the fractional contact area, both
articles report mean coverage allowing validation of
Equation 16 that accounts for surface effects. Niskanen
and Rajatora report network porosity also, whilst Paavi-
lainen reports network thickness and assumed the mass
per unit area of all networks to be 60 gm−2 allowing
porosity to be estimated, again assuming the density
of fibres to be that of cellulose. Niskanen and Rajatora
note also that the ‘bonding ratio’ reported by Paavi-
lainen is, in fact �∗

mp − 1/c̄ and accordingly the data
have been corrected for use here.

The fractional contact area calculated using
Equation 16 with the coverage and porosity data
of Paavilainen and Niskanen and Rajatora is plotted
against the measured fractional contact area in Fig. 7
where the broken line has unit gradient. Whilst agree-
ment with the data of Paavilainen is good, the model
yields estimates of the fractional contact area that are
more than double the values reported by Niskanen and
Rajatora. The precise cause of the discrepancy between
the model and the data of Niskanen and Rajatora is un-
clear, though in the discussion of their data, they noted
that their estimates of fractional contact area were lower

Figure 7 Comparison of fractional contact area calculated considering
surface contribution with data of Paavilainen [23] and Niskanen and
Rajatora [11].
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than those of Yang et al. [18] and Paavilainen [23] who
used similar measurement techniques on samples of
similar density. We note that the data of Yang et al. and
those of Paavilainen yield estimates of the fractional
contact area much closer to those obtained by Jowsey,
Moss and Wilde using optical techniques.

4. Discussion
The theory presented here allows the fractional contact
area in random fibrous networks to be calculated from
the expected coverage of the network and the network
porosity. For sufficiently thick networks, knowledge of
the porosity only is required. Previous models are either
applicable only to thin networks that are not represen-
tative of industrial formed structures [5, 7], or require
knowledge of either fibre thickness [10, 13] or param-
eters associated with the measurement technique [11].
Here, the coverage of a layer has been defined in terms
of network porosity only, this being an intrinsic prop-
erty of the structure. Determination of the mean cov-
erage of multiplanar structures requires knowledge of
the width and coarseness of the fibres and these param-
eters are much easier to determine than fibre thickness
as required by the models given in the literature. The
model allows also determination of the expected area
of a single crossing and hence of the expected number
of crossings per fibre.

The theory has been compared with experimental
data for networks of porosity of above 0.3 and a frac-
tional contact area of about 0.75. Whilst the expressions
are valid for porosities above, corresponding to a poros-
ity of around 0.21, this lower limit yields a prediction
of fractional contact area approaching 1. Clearly this
condition can only be met by having a porosity of zero.
The theory presented here applies strictly to projections
of the fibre surface in the x-y plane. As such, the pre-
dictions given by the theory are probably most reliable
for networks of porosity greater than about 0.3.

5. Conclusions
Expressions have been derived for the fractional con-
tact area in random fibre networks. Three cases have
been considered: two dimensional networks and mul-
tiplanar networks formed from the superposition of
two-dimensional networks neglecting and including the
contribution of surfaces. In the first two cases, the frac-
tional contact area may be expressed in terms of the

porosity only; in the third case the expected coverage of
the network must be considered also. The expressions
derived have been compared with experimental data
from the literature and the agreement is good. Given
the fractional contact area, an estimate of the expected
number of contacts per fibre can be made; the quality
of this estimate is difficult to test, though its depen-
dence on network porosity and fibre aspect ratio seems
appropriate.
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